目 次

研究発表 1 3

「繰返し荷重を受ける金属系あと施工アンカーの軸引張耐力に与える曲げひび割れ の影響評価」 神戸大学 准教授 三木 朋広 氏

「接着系あと施工アンカーとコンクリートの付着性能・ひび割れ性状に及ぼす コンクリート強度・接着剤種類の影響」 千葉工業大学 工学専攻 博士課程 酒井 裕基 氏

「コーン状破壊により損傷した露出柱脚のあと施工アンカーを用いた被災後補修法」 豊橋技術科学大学 助教 仲田 章太郎 氏

あと施工アンカー技術講演会

「繰返し荷重を受ける金属系あと施工アンカーの軸引張耐力 に与える曲げひび割れの影響評価」 神戸大学 准教授 三木 朋広 氏

2024年度あと施工アンカー技術講演会 (一社)日本建設あと施工アンカー協会 2024/9/12 13:00~16:10 一橋大学 一橋講堂

2023 年度 JCAA 研究助成報告

繰返し荷重を受ける

金属系あと施エアンカーの軸引張耐力に与える曲げひび割れの影響評価

神戸大学 准教授 三木 朋広

研究の背景と目的

- あと施エアンカーエ法は、耐震補強、橋梁上部構造の落橋防止装置等、 コンクリート構造物への付帯設備の取付けなどに使用される。
- 本研究では、あと施工アンカー部の長期特性の把握に向けた基礎検討として、繰返し荷重、側圧、ならびに曲げひび割れがあと施工アンカー部の軸引張耐力に与える影響について実験的に把握することを目的とした。

 載荷実験では、

 ① 金属拡底アンカー と ② 金属拡張アンカー を使用し、
 ブロック供試体、ならびにRCはり供試体を用いて、
 側圧(圧縮力)を作用させた状態、またはひび割れが生じた状態で、
 あと施工アンカーに軸引張荷重を作用させた。

金属系あと施工アンカー

孔内清掃

下穴穿孔

深さ・垂直度 確認

● 金属拡底アンカー

 金属拡張アンカー (スリーブ打込み式)

l:本体(スリーブ)長さ=60 mm
 D_a:アンカー本体の直径=17.3 mm
 l_e:有効埋込み長さ=42.7 mm

打込み

締付け
(固着完了)

M12ボルト 断面積 84.3 mm² 降伏強度 235 N/mm²

l_e :<mark>有効埋込み長さ=48 mm</mark> *D_a* :アンカー拡径後の拡径部の 直径=32 mm

M12ボルト(SUS304相当) 断面積 84.3 mm² 降伏強度 235 N/mm²

孔内清掃

拡径

拡径確認

コンクリートブロック供試体の圧縮載荷試験

RCはりの曲げ載荷試験の様子

曲げ荷重を作用させた状態で引張試験を実施するため、
 引張試験の治具、支持板、ロードセル等をコンパクトなものとした。

曲げ<mark>圧縮</mark>側の様子

実験方法 まとめ

ブロック供試体

ID		載荷方法
1A	840	単調
1B	840	単調
2A	840	繰返し
2B	840	繰返し
3A	600	単調
3B	600	単調
4A	600	繰返し
4B	600	繰返し
5A	300	単調
5B	300	単調
6A	300	繰返し
6B	300	繰返し
7A	60	単調
7B	60	単調
8A	60	繰返し
8B	60	繰返し

RC梁供試体

	アンカー種類	曲げ荷重(kN)	曲げひび割れ幅 (mm)
RCはり <u>拡底</u> _45	拡底アンカー	45	0.15
RCはり <u>拡底</u> _60	拡底アンカー	60	0.3-0.5
RCはり <u>拡張</u> _45	拡張アンカー	45	0.15
RCはり <u>拡張_</u> 60	拡張アンカー	60	0.3-0.5

ブロック供試体

あと施工アンカーが軸直交方向から側圧として圧縮強度の 56%(840 kN), 40%(600 kN), 20%(300 kN), 4%(60kN) に相当する圧縮力を受けた状態

RC梁供試体

曲げ圧縮側:60 kN載荷時に等曲げモーメント区間の圧縮縁で コンクリートが圧縮ひずみ1000µ程度(25 N/mm²)相当の 圧縮力を側圧として受け状態

曲げ引張側:40kN載荷時 0.15mm程度,60kN載荷時 0.31 ~0.54 mmの最大のひび割れ幅

有効水平投影面積Ac

- 金属拡底アンカー
- le::有効埋込み長さ=48.1 mm
- D_a :アンカー拡径後の拡径部の直径=32 mm
- $A_c = \pi l_e (l_e + D_a) = \pi \cdot 48.1 \cdot (48.1 + 31.7)$ = 12058.6 mm²

金属拡張アンカー スリーブ打込み式

- *l*:本体(スリーブ)長さ=60 mm
- *D_a*:アンカー本体の直径=17.3 mm
- l_e :有効埋込み長さ=42.7 mm $A_c = \pi l_e (l_e + D_a) = \pi \cdot 42.7 \cdot (42.7 + 17.3)$ = 8048.8 mm²

土木学会(2020): コンクリートのあと施エアンカーエ法の 設計・施工・維持管理指針(案)

耐力算定式

 $T_{yd}: 設計降伏耐力$ $T_{yd} = K_t T_y / \gamma_b (1)$ ここで, $T_y = a_o f_{ymd}$ $K_t = 1.0, \gamma_b = 1.1$ $a_o = 84.3 mm^2,$ $f_{ymd} = 235/1.1=213.6 N/mm^2$ $T_{cd}: 設計コンクリートコーン状耐力$ $T_{cd} = K_t \alpha A_c \sqrt{f'_{cd}} / \gamma_b (2)$

ここで、
$K_t = 1.0, \ \alpha = 0.31, \ \gamma_b = 1.6$
$A_c = \pi \ l_e \ (l_e + D_a)$
$l_e = 48.1 \text{ mm}$
$D_a = 31.7 \text{ mm}$
$f'_{cd} = 37.3/1.3 = 28.7 \text{ N/mm}^2$

		拡張アンカー	拡底アンカー
f'_{ck}	N/mm ²	37.3	37.3
f'cd	N/mm ²	28.7	28.7
Ye		1.3	1.3
a	mm ²	84.3	84.3
f_{y}	N/mm ²	235	235
fysd	N/mm ²	213.6	213.6
Ys		1.1	1,1
l_e	mm	42.7	48.1
l	mm	60.0	48.1
D_a	mm	17.3	31.7
T_{yd}	kN	16.4	16.4
K_t		1.0	1.0
T_y	kN	18.0	18.0
76		1.1	1.1
T_{cd}	kN	8.4	12.5
K_t		1.0	1.0
a		0.31	0.31
A_c	mm ²	8048.8	12058.6
$\sqrt{f'_{cd}}$		5.36	5.36
26		1.6	1.6
破壊モ	- 1	コーン状破壊	コーン状破壊

実験結果と考察(ブロック供試体)

	実験結果(ブロック供試体) ^{設計降伏耐力Tyd 16.4 kN} 設計コンクリートコーン状破壊耐力Tcd 12.5 kN										
金属	拡底	アンナ	5—			金属	拡張	アンナ	7—		
ID	側圧 (kN)	載荷 方法	Pmax (kN)	Pmax時 変位(mm)	破壊モード	ID	側圧 (kN)	■ 載荷 方法	Pmax (kN)	Pmax時 変位(mm)	破壊モード
1 A	840	単調	50.1	9.0	鋼材降伏	1A	840	単調	48.1	5.3	鋼材破断
1B	840	単調	49.9	10.1	鋼材降伏	1B	840	単調	49.4	4.7	鋼材降伏
2A	840	繰返し	50.8	9.4	鋼材降伏	2A	840	繰返し	48.6	4.9	鋼材破断
2B	840	繰返し	50.7	8.5	鋼材降伏	2B	840	繰返し	48.3	5.4	鋼材破断
3 A	600	単調	50.4	9.2	鋼材破断	3A	600	単調	39.7	9.2	割裂破壊
3B	600	単調	51.5	8.3	鋼材破断	3B	600	単調	50.6	14.9	鋼材破断
4A	600	繰返し	50.8	11.7	コーン状破壊	4A	600	繰返し	50.1	5.9	鋼材破断
4B	600	繰返し	49.3	8.0	鋼材破断	4B	600	繰返し	50.1	7.0	鋼材破断
5A	300	単調	51.7	10.3	鋼材破断	5 A	300	単調	49.8	6.1	鋼材破断
5B	300	単調	51.5	9.0	コーン状破壊	5B	300	単調	38.7	5.4	割裂破壊
6A	300	繰返し	51.0	8.5	鋼材破断	6A	300	繰返し	48.9	10.3	鋼材破断
6B	300	繰返し	51.1	9.5	鋼材破断	6B	300	繰返し	49.8	6.7	鋼材破断
	60	単調	46.8	7.0	割裂破壊	7A	0	単調	30.7	1.1	鋼材降伏
7B	60	単調	47.2	6.5	コーン状破壊	7B	0	単調	9.6	2.0	割裂破壊
8 A	60	繰返し	36.4	4.6	割裂破壊	8 A	60	繰返し	34.6	4.8	割裂破壊
8B	60	繰返し	41.9	5.2	コーン状破壊	8B	60	繰返し	35.7	5.1	割裂破壊

実験結果と考察 (RC梁供試体)

拡張45kN

実験結果(RCはり,拡底アンカー

RCはり	設置 位置	繰返し 回数	最大荷重(kN)	最大荷重時 の変位(mm)	破壊モード
1	圧縮側	<mark>2回</mark>	35.36	3.02	割裂破壊
2	圧縮側	12回	49.98	8.73	鋼材降伏
3	圧縮側	11回	51.24	7.10	鋼材降伏
4	圧縮側	12回	50.04	7.29	鋼材破断
5	圧縮側	10回	47.06	5.14	コーン状破壊
6	圧縮側	<mark>6回</mark>	37.45	4.53	コーン状破壊
7	引張側	20	35.31	6.07	割裂破壊
8	引張側	1回	<mark>28.73</mark>	5.21	割裂破壊
9	引張側	1回	<mark>25.38</mark>	3.67	割裂破壊
10	引張側	1回	<mark>33.48</mark>	4.66	割裂破壊
11	引張側	1回	<mark>31.70</mark>	6.71	割裂破壊
12	引張側	1回	34.84	3.55	割裂破壊
13	引張側	1回	34.16	8.67	割裂破壊

設計降伏耐力Tyd 16.4 kN 設計コンクリートコーン状破壊耐力Te

設計コンクリートコーン状破壊耐力Tcd 12.5 kN

) コーン状破壊の例(圧縮側No.5)

割裂破壊の例(引張側中央No.10)

あと施エアンカー周辺のひび割れ幅の計測

各アンカー種類の特徴

	拡底アンカー	拡張アンカー
破壊モード	圧縮側:鋼材破断 引張側:割裂破壊	圧縮側:割裂破壊 引張側:割裂破壊
最大耐力	ひび割れの影響で 低下	ひび割れの影響で 低下
荷重変位関係	最大荷重到達後に 荷重が <mark>低下</mark>	最大荷重到達後も 荷重を <mark>保持</mark>
ひび割れ幅	最大荷重時に ひび割れ幅が <mark>最大</mark>	最大荷重後も ひび割れ幅が <mark>増大</mark>

まとめ

ブロック型供試体

金属拡張アンカーにおいて、側圧が大きいと破壊モードは鋼材破断 と割裂破壊であり、側圧が小さいと割裂破壊であった. 一方、金属拡底アンカーでは側圧が大きいと鋼材破断とコーン状破

壊がみられ,側圧が小さいと割裂破壊とコーン状破壊であった.

● RC梁供試体

曲げひび割れが生じた領域におけるあと施工アンカー部の引張耐力 は、ひび割れの影響で最大耐力が低下するが、0.13~0.5mm程度 の範囲では、ひび割れ幅によらず最大耐力の低下はほぼ同程度であ った.ただし、最大荷重後の挙動については、あと施工アンカーの 種類による違いがみられた.

今後の展望

- ブロック型供試体において、側圧の違いによって破壊モードが異なる ことがわかった
- さらに、小型の供試体を用いて、比較的小さい側圧で周辺のコンクリートによる拘束状態を再現できる可能性がある
 小型供試体によるアンカーの簡易的な性能評価への展開
- 梁供試体引張側,曲げひび割れによる最大耐力の低下が確認できた
- アクティブなひび割れが生じたコンクリートに対して、
 拡底アンカーと拡張アンカーには最大荷重後の変形挙動に違いがあった
 設置環境に応じたアンカー種類の選択に役立つ

今後は、あと施工アンカーの引張耐力に与えるひび割れ幅、繰返し載荷、 ならびに群効果についても引き続き研究する予定である

ご清聴ありがとうございました

KOBE UNIVERSITY

18

「接着系あと施工アンカーとコンクリートの付着性能・ ひび割れ性状に及ぼすコンクリート強度・接着剤種類 の影響」

千葉工業大学 工学専攻 博士課程 酒井 裕基 氏

研究背景

接着系あと施工アンカー(以下,接着系アンカー)は 次の2つに主に用いられる.

- ▶ 耐震補強工事の新旧構造躯体の接合用.
- ▶ 設備機器を鉄筋コンクリート造(以下,RC)部材へ取付け用.

2022年3月31日の建築基準法に関する 国交省告示第1024号の一部改正により

,接着系アンカーを建築物の主要構造部材に 用いることが可能となる.

今後、既存建築物の増改築、新築建築物の主筋の定着に 接着系アンカーが用いられる可能性がある.

建築基準法の改正

研究背景

接着系アンカーは短い定着長さで定着力を確保するように 開発目標とされた為、付着強度が高い.

21

研究目的

付着応力度分布制御実験

▶ 付着性能の把握、付着応力度分布制御

▶ 実験結果をFEM解析により再現

コンクリート強度、接着剤種類を要因とした鉄筋とコンクリート の付着性能、ひび割れ性状の把握実験

▶ 接着系アンカーでコンクリート強度・接着剤種類を要因とした付着性能・ひび割れ性状の把握

付着応力度分布制御実験

付着性能・ひび割れ性状の把握実験

実験概要

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.														
アンカー筋				コンクリート			グラウトの			グラウトの材料特性				
試験体	接着剤		降伏点	弾性係数	圧縮強度	弾性係数	}	主入パ	ターン	/		圧縮強度	付着強度	
	鉄筋	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]	sec. a	ec, a sec, b sec, c sec, d		sec. d	記号	[N/mm ²]	[N/mm ²]		
1	無機系						τ5	τ5	τ5	τ5	τ5	12.4	3.40	
2		D25		004000		05400	τ 20	τ 20	τ 20	τ 20	τ 10	21.8	5.90	
3	接 (グラウト)	(ねじ節)	(ねじ節)	1194	204000	41.9	.9 35400	τ5	τ10	τ15	τ 20	τ15	33.1	9.90
4	())) ()						τ5	τ5	τ5	τ 20	τ 20	52.2	20.1	

加力•測定方法

実験結果

実験結果

実験結果

◆グラウトの充填状況、破壊状況(例:No.3)

Sec.a $\tau 5$ Sec.b $\tau 10$ Sec.c $\tau 15$ Sec.d $\tau 20$

FEM解析 概要

E_s:鉄筋のヤング係数

FEM解析 概要

付着モデル

付着実験から最大付着強度、最大付着強度時のすべり、最大付着強度 後の下り勾配を用いて森田らが提案した付着方程式よりモデル化.

- $\tau_{x1} = e \cdot \frac{\log \left[(e-1)S_{x1} + 1 \right]}{(e-1)S_{x1} + 1}$ 森田らが提案した付着方程式
- τ_{xl} : 付着応力度/最大付着強度 S_{xl} : すべり/最大付着強度時のすべり
- ▶ 最大付着強度までは付着方程式 を用いてモデル化。
- 最大付着強度後の下り勾配は実験結果から定めた。

FEM解析 解析結果

◆軸応力度-変位関係

-EM解析 解析結果

FEM解析 解析結果

実験概要 接着系アンカーの付着性能・ひび割れ性状の把握実験

実験要因:接着剤種類,接着剤の強度,コンクリート強度 タイプA・B \Rightarrow RC四角柱の両引き試験体の単調載荷試験 タイプC \Rightarrow 片引きの引抜き試験

ひび割れ間隔・幅確認実験 タイプA

歪み分布確認試験実験タイプB

付着試験 タイプC

内部状況

接着剤概要 無機系接着剤(グラウト)

内部状況

実験概要試験体一覧

◆ ひび割れ間隔・幅確認試験 実験タイプA

試験体	F _c	σ_{B}	鉄筋	接着剤
EA1-1	21	26.5		
EA2-1	60	64.2		エポキシ
EA3-1	100	96.0		
MA1-1	21	31.3		ゲニムト
MA2-1	60	68.0		
MA3-1	100	109	D100D2/15	1-5
MA1-2	21	31.3	D193D345	ゲニムト
MA2-2	60	68.0		$\frac{7}{7}$
MA3-2	100	109		1 - 20
A1-1	21	26.6		
A2-1	60	64.3		先付RC
A3-1	100	94.1		

アンカー筋:降伏点 385 N/mm², ヤング係数 189000 N/mm² *r* 5:目標付着強度が5 N/mm² *r* 20:目標付着強度が20 N/mm²

加力装置

実験概要 試験体形状と加力・測定方法

ひび割れ間隔・幅確認実験 タイプA

実験結果 ひび割れ発生状況

赤線:軸応力度O~215N/mm²,青線:軸応力度215~385N/mm²

実験結果 平均ひび割れ間隔・幅

◆ 歪み分布図, 軸応力度-変位の関係

共通要因:コンクリート強度 変動要因:先付RC,エポキシ, 75,720

実験結果 平均ひび割れ間隔・幅

◆ 歪み分布図, 軸応力度-変位の関係

共通要因:接着剤(エポキシ) 変動要因:コンクリート強度

実験結果 平均ひび割れ間隔・幅

◆ 歪み分布図, 軸応力度-変位の関係

共通要因: 接着剤(グラウト) 変動要因: コンクリート強度

32

実験結果の部ひび割れ状況

無機系(グラウト)

有機系(エポキシ)

実験結果の部ひび割れ状況

無機系(グラウト)

有機系(エポキシ)

実験概要 試験体一覧

試験体	F _c	$\sigma_{\rm B} \over { m N/mm^2}$	アンカー筋	接着剤
CE21-1	21	31.4		
CE60-1	60	68.1		エポキシ
CE100-1	100	110		
Cτ5-21	21	31.4		<i>м</i> =сь
Ст5-60	60	68.1		シブフト テー5
C 7 5-100	100	110		1-5
C 7 20-21	21	31.4	D195D665	<i>м</i> =ьь
Ст20-60	60	68.1		クノフト
Ст20-100	100	110		1-20
C1-1	21	26.1		
C2-1	60	61.2		先付RC
C3-1	100	98.1		
00 1		00.1		

アンカー筋:降伏点 713 N/mm², ヤング係数 199000 N/mm² *τ*5:目標付着強度が5 N/mm² *τ*20:目標付着強度が20 N/mm²

加力装置

実験概要 試験体形状と加力・測定方法

付着試験 タイプC

実験結果 付着応力度と抜け出し量

 ◆付着応力度-抜け出し量の関係 (加力側)

実験結果 付着応力度と抜け出し量

エポキシ たち た20 上からFc21,Fc60,Fc100上からFc21,Fc60,Fc100上からFc21,Fc60,Fc100

実験概要 試験体一覧 試験体形状 加力方法

試験体	Fc	鉄筋	接着剤
RB-1	21		
RB-2	60	D19SD345	エポキシ
RB-3	100		

加力装置

実験結果 歪度分布

◆ 歪度分布図(長期許容応力度まで)

実験結果 歪度分布

◆ 歪度分布図(アンカー筋降伏まで)

FEM解析 解析概要

付着モデル① 付着モデル2 $\tau_{x1} = e \cdot \frac{\log \left[(e-1)S_{x1} + 1\right]}{(e-1)S_{x1} + 1}$ 実験値から逆算し一次剛性、 森田らが提案した付着方程式 二次剛性を算定 30 30 付着モデル2 付着モデル① 25 25 付着応力度 (N/mm²) 付着応力度 (N/mm²) 20 20 15 15 K_2 10 10 K_1 5 5 0 0 0.0 0.5 1.5 2.0 1.0 0.5 1.0 すべり (mm) 0.0 1.5 2.0 すべり (mm)

FEM解析 解析結果 付着モデル①

FEM解析 解析結果 付着モデル②

まとめ

付着応力度分布制御実験

- ▶ 付着強度が試験体では応力は埋込み端部まで伝達、付着強度が高い試験体では応力は孔口部に集中した.
- ▶ 付着強度の異なるグラウトを層状に固着することで付着応 力度分布を制御可能.
- ▶ FEM解析により、付着応力度分布、軸応力度-変位関係を 概ね再現できた.

コンクリートと鉄筋間の付着性能・ひび割れ性状に 及ぼすコンクリート強度・接着剤種類の影響

▶ 接着系アンカーでコンクリート強度・グラウト・エポキシの付着性状の違いが *r*-s関係に現れ、ひび割れ性状が異なることがわかった.

あと施工アンカー技術講演会

「コーン状破壊により損傷した露出柱脚のあと施工アン カーを用いた被災後補修法」 豊橋技術科学大学 助教 仲田 章太郎 氏

41

2024年あと施工アンカー技術講演会

コーン状破壊により損傷した露出柱脚のあと施エアンカーを用いた被災後補修法

豊橋技術科学大学 助教 仲田 章太郎

プロフィールと研究紹介

1994年 沖縄県那覇市首里にて誕生 2013年 琉球大学入学

那覇市における収容避難所の耐震性能に 関する研究

2017年 東京工業大学 入学

ターンバックルブレースの締め直しによる 屋内運動場の被災後補修に関する研究

プロフィールと研究紹介

1994年 沖縄県那覇市首里にて誕生

2013年 琉球大学 入学

那覇市における収容避難所の耐震性能に 関する研究

2017年 東京工業大学 入学 ターンバックルブレースの締め直しによる

屋内運動場の被災後補修に関する研究

【研究対象】

プロフィールと研究紹介

1994年 沖縄県那覇市首里にて誕生 2013年 琉球大学入学

那覇市における収容避難所の耐震性能に 関する研究

2017年 東京工業大学 入学

ターンバックルブレースの締め直しによる 屋内運動場の被災後補修に関する研究

2022年 豊橋技術科学大学 助教 着任

プロフィールと研究紹介

1994年	沖縄県那覇市首里にて誕生
2013年	琉球大学 入学

那覇市における収容避難所の耐震性能に 関する研究

2017年 東京工業大学 入学

ターンバックルブレースの締め直しによる 屋内運動場の被災後補修に関する研究

2022年 豊橋技術科学大学 助教 着任

LRBの復元力特性

ガオ君(M1)

2

3

プロフィールと研究紹介

1994年 沖縄県那覇市首里にて誕生 2013年 琉球大学入学 那覇市における収容避難所の耐震性能に 関する研究

2017年 東京工業大学 入学 ターンバックルブレースの締め直しによる 屋内運動場の被災後補修に関する研究

LRBの復元力特性

2022年

豊橋技術科学大学 助教 着任

山尾君(M1)

避難所の混雑推定

44

柱脚

2022年

プロフィールと研究紹介

1994年 沖縄県那覇市首里にて誕生 2013年 琉球大学 入学

那覇市における収容避難所の耐震性能に 関する研究

2017年 東京工業大学 入学

LRBの復元力特性

ターンバックルブレースの締め直しによる 屋内運動場の被災後補修に関する研究

豊橋技術科学大学 助教 着任

アレックス(D1)

露出柱脚の被災後補修

4

45

避難所の混雑推定

柱脚

露出柱脚の増し打ちによる補修 ー要素実験ー

露出柱脚の補修-実験方法-

5

露出柱脚の補修-試験体-

露出柱脚の補修-試験体-6 D6 試験体 D6_8(4) 試験体 D10_8(4) おける柱主筋断面 補修部 3 試験体 D6_10(6) 試験体 D13_8(4) 0 0 0 0 0 0 試験体 D6_12(8) 試験体 D6_8(8)

6

露出柱脚の補修ー実験結果①-

7

7

露出柱脚の補修ー実験結果①-

露出柱脚の補修-実験結果①-

7

8

露出柱脚の補修 -実験結果2-

露出柱脚の補修-実験結果③-

9

10

露出柱脚の補修ー実験結果④

露出柱脚の補修-実験結果5-

露出柱脚の補修 –実験結果⑥–

12

露出柱脚の補修-実験結果のまとめ-

露出柱脚の補修 -ひび割れ耐力の比較- 14

13

露出柱脚の補修 -ひび割れ耐力の比較- 14

まとめ

17

18

2023年度の露出柱脚の補修に関する研究では、増し打ち部を対象 とした要素実験を行い、ひび割れ耐力、最大耐力、残存耐力を評価 した。本研究により得られた知見を下記にまとめる。

- [1] ひび割れ耐力は、コーン状破壊耐力の計算式により 評価できることがわかった。
- [2] 最大耐力は、定着部破壊の時は指針式とダボ効果の和、 界面部破壊の時は既往の研究で得られたせん断応力 度を用いて、評価できることがわかった。
- [3] 残存耐力は、破壊後に降伏するあと施エアンカーと柱主筋の和として評価できる。

今後の課題

2024年度の露出柱脚の補修に関する研究では、あと施エアンカー を用いた増打による実大実験を行い、ひび割れが補修部におよぼす 影響について検討する。

研究成果

本助成金により、下記に示す論文を執筆することができました。ここに記して謝意を表します。

- 1) 永松孝太郎, 高橋淳平, 仲田章太郎, 松井智哉, 吉敷祥一: あと施エアン カーを用いた増打ちによる露出柱脚の被災後補修 その1 要素実験の計画 と結果の概要, 日本建築学会大会大会学術講演, 日本建築学会大会学術講 演梗概集, 日本建築学会, 構造Ⅲ, pp. ???-???, 2024.9
- 2) 高橋淳平,永松孝太郎,仲田章太郎,松井智哉,吉敷祥一:あと施エアン カーを用いた増打ちによる露出柱脚の被災後補修 その2 ひび割れ耐力、 最大耐力および残存耐力の評価,日本建築学会大会大会学術講演,日本建 築学会大会学術講演梗概集,日本建築学会,構造皿,pp.???-???,2024.9

あと施工アンカー 技術講演会

2024年9月12日

一般社団法人 日本建設あと施工アンカー協会

〒 101-0031 東京都千代田区東神田 2-6-9